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Verification of Ising phase transitions in the three-dimensional Ashkin-Teller model
using Monte Carlo simulations
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Monte Carlo simulations in the three-dimensional (3D) Ashkin-Teller model on a cubic lattice are performed
in the regions of the two-parameter space diagram where Ising-type phase transitions are expected. The scaling

behavior of the Binder cumulant Q and the magnetic susceptibility in the critical region are exploited. In
simulations the periodic boundary conditions and the Metropolis algorithm are used. Starting from Ising
critical exponents and applying the finite-size-scaling analysis of the cumulant Q with nonlinear corrections,
the accurate positions of the critical couplings on the continuous phase transition lines are calculated. For these
couplings the critical exponent y,, is calculated analyzing the magnetic susceptibility in the framework of the
finite-size scaling with corrections. The values of y, agree with the 3D Ising model value along two lines

determined by the order parameter (so).
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I. INTRODUCTION

As a nontrivial generalization of the Ising model, the
Ashkin-Teller (AT) model [1] has been for many decades one
of the important reference points in statistical physics. The
interest in this model has much increased after Fan’s paper
appeared [2] in which he expressed the Hamiltonian H of
this model

H
- leT = 2 {Ky(s;5;+ 0,07) + Kys,075,07} (1)
[i.j]
by means of two independent Ising degrees of freedom, s;
and o (i.e., s; and o; are the variables that can take values +1
or —1), residing on each lattice site. [i,;] denotes the sum-
mation over nearest neighboring lattice sites, K;=—J;/kgT,
with i=2 or 4, and T is temperature. Moreover, J, is the
coupling of the nearest neighbor interaction between the de-
grees of freedom s; as well as for o;, whereas J, is the cou-
pling between the product of these degrees of freedom s;0;.
This model can be interpreted as two superimposed Ising
models and this fact prompted the interest in its critical prop-
erties (see [3-9], and the papers cited therein). One of the
models is described in spin variables s; and the other in vari-
ables o; and in both of them there are exclusively two-spin
interactions of a constant magnitude J, between the nearest
neighbors only. Simultaneously, these two different models
are coupled by a four-spin interaction of a constant magni-
tude J4, also only between couples of spins residing at the
nearest neighboring lattice sites. Thus, this is a model with a
three-component order parameter: (s), (o), and (so), where
the symbol (- --) denotes the thermal average. Moreover, the
symbol (so) means that we calculate the thermal average of
the variable so being the product of the spins s and o, resid-
ing on the same lattice site. These three parameters can be
ordered independently leading to the interesting phase dia-
gram.

*Corresponding author; gmusial @amu.edu.pl

1539-3755/2008/77(3)/031124(6)

031124-1

PACS number(s): 05.50.+q, 75.10.Hk, 75.30.Kz, 75.40.Mg

The present state of knowledge about the phase diagram
of the three-dimensional (3D) Ashkin-Teller model on a cu-
bic lattice is presented in Fig. 1. The broken and solid lines
denote the first order and the continuous phase transitions,
respectively. The first thorough analysis by both the short
series analysis and the Monte Carlo (MC) method and dis-
cussion of the phase diagram was made by Ditzian et al. [3].
In Fig. 1 all phases are specified in the legend and we follow
the notation of Ditzian et al. [3]. In [3] the reader finds also
an interesting comparative discussion which brackets the be-
havior of the 3D AT model between the mean field and the
two-dimensional (2D) behaviors. We see from the above that
the phase diagrams of the AT model in 2D and in 3D sub-
stantially differ. The precise MC results of Arnold and Zhang
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FIG. 1. The phase diagram of the 3D Ashkin-Teller model on a
cubic lattice. The broken lines denote the first order phase transi-
tions, whereas the solid lines denote the continuous ones. The phase
labeled Baxter is ferromagnetically ordered with (s), (o), and (so)
nonzero, whereas in the phase labeled para they are all zero. In the
phases “(so)” and “(so),p,” (s)=(0o)=0, and only the parameter
(sa) is ferromagnetically and antiferromagnetically ordered, respec-
tively. For the phase “(s),” (so)=0 and either (s) or (o) is ferro-
magnetically ordered but the other is not. The positions of labeled
points inside the phase diagram are marked by +’s, whereas the
results of our Monte Carlo simulations are marked with X’s.
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[4] were obtained in the narrow range of the model param-
eters along the line AP (with P being the four state Potts
point). The boundaries of the mixed phase region {s) and the
localization of the tricritical point H were investigated and
the deviations from the Ising character of phase transitions
on the line AHK' were reported by Musiat and Rogiers [10],
whereas the localization of the remaining tricritical points K,
K',F,G were examined by Musiat [11].

Apart from the interesting and complicated phase diagram
(the tricritical points, weakly first order phase transitions in
the surrounding of point A, the mixed phase region “(s),” and
a possible variation of values of critical exponents along the
line AHK') and the fact that this model is being used for
interpretation of the experimental data [5], it still is an im-
portant reference point in the statistical physics and it has
found many interesting applications from cosmology [4] to
neural networks [12].

Recently the critical properties of the 3D Ising models
were carefully investigated by Deng and Blote [13] using the
cluster MC method. Their precise results for the Ising uni-
versality class can be exploited here as far as the critical
exponents and the critical value of the Binder cumulant are
concerned. Recent extensions of the MC simulations to other
important spin lattice models (tricritical Blume-Capel and
dilute Potts models) [14—16] are worth noting.

This paper presents the results of our MC simulations in
these regions of the (K,,K,) phase diagram of the 3D AT
model on a cubic lattice in which the bibliographical data
suggest the Ising character of phase transitions. The new
motivation to continue the work done in the papers [11,17]
toward confirmation of the Ising universality class of the
continuous phase transition lines of the model (1) comes
from the achievements of Deng and Blote [13]. Their data
and our accurate calculations of the phase transition points
together with the careful finite-size-scaling analysis of the
magnetic susceptibility have prompted us to estimate the
value of the critical exponent y, in agreement with the cor-
responding Ising value.

As in our previous simulations, we have used the local
Metropolis algorithm suffering from critical slowing down,
although more efficient cluster algorithms have been worked
out [18,19] for the Ashkin-Teller model. In two dimensions
they suppress [20] critical slowing down. In three dimen-
sions, where for Ising-type models it is only partially re-
duced [19], cluster algorithms would nevertheless improve
the efficiency of simulations.

II. MONTE CARLO SIMULATIONS

The Monte Carlo simulation is a kind of experiment per-
formed to predict the behavior of a macroscopic system (i.e.,
that with a large number of degrees of freedom) when given
the laws governing its microscopic behavior. Here each MC
run started with thermalization of the length of 107 Monte
Carlo steps (MCS) to reach thermodynamic equilibrium as-
suming the periodic boundary conditions. Our MCS is com-
pleted when each of the lattice sites has been visited once.

Next, we have generated the equilibrium configurations
(microstates) of the finite-size cubic spin samples of the size
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LXLXL (8=<L=30) for fixed values of the model param-
eters, using the Metropolis algorithm. The good quality 64-
bit random number generator was exploited, applicable even
in parallel processing, as checked by Srinivasan et al. [21]. Tt
was important to have independent sets of pseudorandom
numbers in each parallel process to obtain statistically inde-
pendent results.

Each MC run was split into k=19 segments, each of them
consisting of five 5X 10° MCS and one partial average of
each measured quantity (PA) was calculated from mi-
crostates in each segment to estimate the statistical scattering
of the results. In the calculation of PAs only every tenth MC
step contributes, to avoid correlations between sampled mi-
crostates of spins in the system and to sample microstates
with the Gibbs distribution of probability.

To determine the phase transition points, an analysis of
behavior of the fourth order cumulant Q; is convenient
[6,13,22].

(M)
My

oL (2)

where (M"); denotes the nth power of the « spins order
parameter, with a=s, o, or sa, averaged over an assembly of
independent samples of the size L X L X L. The cumulant Q;,
called the Binder cumulant, allows investigation of the mag-
netic ordering in a system, as for 7>T7, and L> &, where &
denotes the correlation length, Q; tends toward %, which
corresponds to a Gaussian distribution, whereas for T<T7,
and L>¢, Q, tends to 1 [22,23]. In the critical region for
L=¢, Q; varies only weakly with temperature and linear
dimension, and stays very close to the constant value Q. For
the 3D Ising model with cubic symmetry and periodic
boundary conditions, Deng and Bléte [13] have obtained Q
=0.623 41(4), achieved at the critical point in the thermody-
namic limit L — oo,

The critical value of the cumulant Q; is useful for deter-
mination of critical points also in the AT model, reducing the
number of unknown parameters in the fitting procedure. Ne-
glecting corrections to scaling, the critical value K,. can be
estimated from the common intersection point of the curves
0, [6,22,23], having fixed the value K.

An improvement of this estimation can be achieved if the
nonlinear corrections to scaling [24] are taken into account.
Fixing the value of the coupling K4, we can write the corre-
sponding expansion in the form [24]

QL(K2) = Q + a](K2 - KZC)Ly’ + a2(K2 — ch)sz)’r 4o
+b1L)’i+b2Ly2+...’ (3)

applicable when x=(K,—-K,.)[’*<1, where a; and b; are
nonuniversal coefficients, y,=d—2y,, and d=3 is the dimen-
sionality of the system. The recently obtained values of criti-
cal exponents for the 3D Ising universality class [13] are y,
=1.5868(3), y,=2.4816(1), y;=—0.821(5), and the universal
ratio 0=0.623 41(4).

In the critical regions, a similar scaling analysis of the
magnetic susceptibility of a spins calculated for the finite-
size samples
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xo=LAM2); (4)

can be performed. Fixing the value of the coupling K, the
expansion in x=(K,—K,.) L' <1,

xi(Ky) = co+ L7 [eg + ) (Ky — Ky )Lt + e5(K,y — Ky ) "L
+ b, L] (5)

can be found [24], where b;,c;,e; are nonuniversal coefficients
and the remaining parameters have the same meaning as in
Eq. (3). The analysis based on the expansion (5) leads to
good estimates of the critical exponent y, provided that K,
is known to a high accuracy.

II1. SIMULATION RESULTS AND THEIR ANALYSIS

We have performed simulations in the regions of the
phase diagram close to the lines DK, BF, and CG in Fig. 1
where the Ising character can be anticipated (see [10,11], and
the papers cited therein). Musial and Rogiers have found
[10] that the phase transitions on the line AHK' are probably
also continuous but they do not seem to be Ising type. To
analyze the phase transitions on the lines DK, BF, and CG in
Fig. 1 we use the mean values of spins s, o, and so as the
order parameters.

In the first step, for a given value of K, coupling, we have
obtained the initial localization of the coupling K, using the
common intersection point of the curves Q; corresponding to
the linear approximation to scaling expansion (3). In this
way, we have confirmed the value of K, previously obtained
[11,17] with the precision of an order 10™*. This accuracy
was not enough for us as the real scaling variable was x
=(K,—K,.)L’t and increased with L.

In the second step we take into account the nonlinear
corrections in scaling expansion (3) assuming the Ising criti-
cal exponents [13]. The formula (3) is transformed to the
form

Q- b Li=b["2=Q +ax +ay?, (6)

very convenient for analysis thanks to the fact that all data
obtained for Q;(K,) as a function of x=(K,—K,,)L"* (at fixed
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FIG. 2. Tllustration of the finite-size scaling analysis of Q;(K>)
at the fixed value K;.=0.205 when Q is the free parameter and no
correction terms with nonuniversal amplitudes b; are taken, i.e.,
b1=b,=0 here. The system size L and the fitted parabola, marked
by the broken line, are displayed in the legend box.
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FIG. 3. Tllustration of the finite-size scaling analysis of Q;(K,)
at K,.=0.205 when Q is subject to fitting. The system size L and the
fitted parabola, marked by the broken line, are displayed in the
legend box.

K4) should collapse now on the same parabola. This makes
the fitting procedure very effective and transparent.

Examples of such analyses are shown in Figs. 2-5. Fig-
ures 2 and 3 demonstrate the use of the finite-size scaling
formula in the form (6) at the coupling K,=0.205 when we
leave Q as the free parameter being the subject of fitting. In
Fig. 2 no correction terms with nonuniversal amplitudes b;
are taken and one can see that the MC data are not conver-
gent to the curve (6) within the fitting error bars and depend
on the size L. Moreover, the fitted value 0=0.647(2) does
not agree with the expected value 0=0.623 41(4) [13].

In the presence of the correction terms with nonuniversal
amplitudes b;, the same MC data presented now in Fig. 3 are
convergent to the estimate 9=0.625(2), which agrees with
the expected value 0=0.623 41(4) [13] within the fitting er-
ror bars, and lead to K,.=0.1135(3).

Next we take the Ising value for the parameter Q obtain-
ing the improved results for critical value of the coupling K.
The corresponding finite-size scaling analysis is shown in
Fig. 4 for K4.=0.205. The same numerical data as those in
Figs. 2 and 3 are reassembled due to a small modification of
the critical coupling K,.=0.113 71(5) for comparison. They
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FIG. 4. The finite-size scaling analysis of Q;(K,) at Ky,
=0.205 when Q is set to the universal value Q=0.623 41. The sys-
tem size L and the fitted parabola, marked by the broken line, are
displayed in the legend box.
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FIG. 5. The finite-size scaling analysis of Q;(K,) at the antifer-
romagnetic coupling K4.=—0.24 when Q is set to the universal
value 0=0.623 41. The obtained value K,.=0.134 887(8). The sys-
tem size L and the fitted parabola, marked by the broken line, are
displayed in the legend box.

fulfill the scaling law very well for 0.003=x=0.3. The fit-
ting procedure and scaling properties in the antiferromag-
netic region of the phase diagram are shown in Fig. 5.

The results of our analyses performed within the finite-
size scaling formula (3) down to |x|=0.002 are collected in
Table I. The first two columns display the coordinates K,
and K,,. of the critical points and they are also marked by
X’s in the phase diagram plotted in Fig. 1. The next columns
in Table I list the values of nonuniversal coefficients a,, a,,
by, and b, with the uncertainties given in parentheses. The
precision of calculation of K, is five or even six digits ex-
cept the points close to the tricritical points K and F, at
which it is of four digits, supposedly as a result of the cross-
over behavior.

High precision of the critical values K,. for a given K,
has enabled the accurate finite-size scaling analysis of mag-
netic susceptibility. The expression (5) here is also trans-
formed to the form

PHYSICAL REVIEW E 77, 031124 (2008)

2.2

21 | P

(1L-CoLE b, LY

0 005 01 015 02 025 03
x=(Ky-Kog)LMt

FIG. 6. Demonstration of the use of Eq. (7) for the finite-size
scaling analysis of the x;(K,) dependence at the fixed values Ky,
=0.205 and K,.=0.113 48. The estimated value of the critical ex-
ponent y, is 2.49(1). The system size L and the fitted parabola,
marked by the broken line, are displayed in the legend box.

[x1— oL —bLi=eg+ e1x + exx?, (7)

which separates the part dependent on the scaling variable x
from that depending on L. Thus, all data obtained for x,(K>)
at fixed K, and arbitrary L should fit the same parabola.

An example of such an analysis with the finite-size scal-
ing formula (7) and K;=0.205 (the same value as in Figs.
2-4 for consistency) is illustrated in Fig. 6. The scaling law
is fulfilled in the region 0.005=x=0.27. This analysis leads
to estimates of the critical exponent y, with the precision of
three significant digits.

The final results are collected in Table II. The first column
gives the coordinates of K. to which the results refer. The
second column displays the estimated values of the critical
exponent y;, and the next columns present the values of non-
universal coefficients ¢, ey, e}, €5, and b; in the expansions
(5) and (7). For convenience, the data referring to the lines
KD, FB, and GC of the phase diagram shown in Fig. 1 are
separated by horizontal lines, respectively. For the phase

TABLE 1. The critical couplings K. and K,,. together with the values of nonuniversal coefficients a;, a,,
by, and b, in the finite-size scaling expansion (3) for the 3D Ashkin-Teller model. The data referring to the
lines KD, FB, and GC in the phase diagram shown in Fig. 1 are separated by horizontal lines, respectively.

Ky K>, aj a by by
-0.35 0.3470(1) -1.18(3) -0.55(2) -0.54(3) -0.26(9)
~0.34 0.334158(6) ~0.97(1) 1.6(1) ~0.02(2) —3.4(2)
-0.3 0.274644(4) -0.57(1) -0.06(3) 0.08(1) -0.5(1)
-0.27 0.21739(1) -0.40(1) 0.15(2) 0.07(1) —-0.06(1)
-0.24 0.134887(8) -0.23(1) 0.04(2) 0.090(3) -0.05(3)

0.19 0.1394(2) 2.0(9) 6(3) 1.0(3) -3.2(2)

0.192 0.1371(1) 1.5(3) 2.6(4) 0.33(4) 1.1(6)

0.205 0.11371(5) 0.35(1) 0.16(7) 0.078(2) 0.29(2)

0.215 0.07769(3) 0.163(2) 0.056(4) 0.098(2) 0.10(4)

0.246 0.120040(7) 1.72(5) 3.2(3) 0.07(2) -0.3(2)

0.4 0.111760(7) 1.74(1) 3.3(1) 0.11(2) -0.23(3)
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TABLE II. The critical exponent y,, for particular values of the coupling K,. together with the values of
nonuniversal amplitudes cg, e, €}, €5, and by in the expansion (5). The data referring to the lines KD, FB, and
GC in the phase diagram shown in Fig. 1 are separated by horizontal lines, respectively.

Ky Vh Co €o e € b,
-0.35 2.52(2) 14.3(4) 9.83(1) -4.31(3) 4.32(9) 1.03(7)
~034  247(2) 14.4(4) 1.66(4) ~5.03(7) 6.42(8) 0.1(1)
-03 2.52(4) ~8.6(9) 0.9(1) ~2.3(1) 1.131) 2.0(2)
~027  2502) ~3.8(1) 1.14(2) ~1.82(1) 0.9(2) 1.0(1)
—024  251(3) -72) 1.002) ~1.00(6) 02(2) 1.7(4)

0.19 272 25(9) 2.2(7) 16(2) 39(5) 5.2(7)

0192 3.0(2) 17(6) 1.8(2) 10(1) 23(7) ~1.6(5)

0205  2.49(1) 1.0(4) 1.42(1) 1.84(1) 1.323) 1203)

0.215 2.51(3) -5.9(5) 0.9(1) 0.65(3) 0.6(3) 1.7(2)

0.246 2.8(2) 34(5) 1.37(8) 0.30(2) 0.51(5) -2.6(4)

0.4 2.9(1) -0.4(3) 0.963(3) 0.010(5) 0.02(1) 0.0067(4)

transition lines KD and FB, determined by the order param-
eter (so), the critical exponent agrees with the Ising value
within error bar. The deviations occur only in close vicinity
of the tricritical points K for K,=-0.35 and F for K,=0.19
and 0.192, which is not taken into account in the scaling
expressions (3) and (5). The strong overestimation of y,, for
the horizontal line GC, determined by the order parameters
(s) and (o), occurs and may be related to substantial devia-
tions from the scaling behavior (5) and (7). We do not know
if this is a signature of a different universality class, an arti-
fact of our simulation algorithm, or the lack of higher order
terms in Eq. (5).

IV. CONCLUSIONS

For the first time the corrections to scaling have been
taken into account in the analysis of the MC simulation data
for the Ashkin-Teller model. The sample sizes L were mod-
erate but simulations were long enough to extract precise
values of the cumulant ratio and magnetic susceptibility
needed for the nonlinear data analysis. The quality of the
simulation data has led to conservation of scaling laws by the
scaling variable x over two to three decades of variation.

Using the finite-size scaling formula (3) and taking into
account the Ising critical exponents and the critical point

ratio Q, we have calculated the coordinates K. and K,. in
the phase diagram shown in Fig. 1 to a precision of five to
significant six digits except for the points close to the tric-
ritical points K and F, where this precision is four digits.

Having reached a sufficient level of accuracy for the criti-
cal coupling K,., we have calculated the critical exponent y,
to a precision of 1-4 %. For the phase transition lines KD
and FB, determined by the order parameter (so), the esti-
mated y, values agree with that for the Ising universality
class so that for the first time we have confirmed the 3D
Ising behavior in this part of the Ashkin-Teller phase dia-
gram. Despite the numerical effort, we have estimated y,, at
about 2.8-2.9 for the critical points along the phase transi-
tion line GC, determined from the (s) and (o) order param-
eter. We consider this result as an artifact rather than a sig-
nature of different critical behavior.
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